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Particle sliding on a turntable in the presence of friction

Akshat Agha, Sahil Gupta, and Toby Joseph?
BITS Pilani, K. K. Birla Goa Campus, Goa, India

(Received 25 March 2013; accepted 16 September 2014)

The motion of a point particle sliding on a turntable is studied. The equations of motion are
derived assuming that the table exerts a frictional force on the particle that is of constant
magnitude and directed opposite to the particle’s motion relative to the turntable. After
expressing the equations in terms of dimensionless variables, some of the general properties of
the solutions are discussed. Approximate analytic solutions are found for the cases in which (i)
the particle is released from rest with respect to the lab frame, and (ii) the particle is released
from rest with respect to the turntable. The equations are then solved numerically to get a more
complete understanding of the motion. It is found that one can define an escape speed for the
particle, which is the minimum speed required to get the particle to move out to infinity. The
escape speed is a function of both the distance from the center of the turntable and the direction
of the initial velocity. A qualitative explanation of this behavior is given in terms of fictitious
forces. Numerical study also indicates an alternative way to measure the coefficient of friction
between the particle and the turntable. © 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4896664]

I. INTRODUCTION

The study of particle motion in rotating frames is a crucial
part of an undergraduate mechanics course. Earth is a rotat-
ing frame and hence the study of any large-scale motion on
the surface of the Earth as observed by an Earth-bound ob-
server necessitates the use of a rotating frame. The use of a
rotating frame can also simplify the study of certain mechan-
ics problems that involve rotating bodies in the laboratory.
One of the first examples discussed in an undergraduate lec-
ture on rotating frames is the motion of a particle on a rotat-
ing two-dimensional platform. The turntable is used
extensively in setting up demonstration experiments to help
students understand the fictitious Coriolis and centrifugal
forces.'™ A rotating platform on which a particle is moving
also forms the basis of a large number of textbook problems
elucidating Coriolis and centrifugal forces and the applica-
tion of the polar coordinate system.

There are a few particle-on-a-turntable problems that are
exactly solvable. The easiest is the motion of a particle that
is not coupled to the table (sliding without friction). In that
case, the motion is one with uniform velocity when observed
from the lab frame. This linear motion, when observed from
the turntable, is not so simple and one has to invoke Coriolis
and centrifugal forces to explain the resulting trajectory.*> A
more difficult problem that can be exactly solved is that of a
spherical ball moving without slipping on a turntable.® The
motion in this case is similar to that of a charged particle in a
magnetic field. The ball follows a circular trajectory whose
location and radius depends on the initial conditions. The
variations of this problem where the turntable is tilted®’ and
freely spinning® have also been studied. Solution of the for-
mer yields cycloidal motion, and for the latter the trajectories
are conic sections. Introducing sliding effects renders the
problem difficult to treat analytically. The motion of a ball
that rolls with sliding on a turntable has been studied using
computer simulations and experiments.’

Though most problems involving turntables in physics
textbooks deal with friction, they tend to significantly restrict
the motion. For example, a typical problem involves finding
the maximum angular frequency with which the table can
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rotate if the particle is to remain at rest with respect to the ta-
ble at a given distance from the rotation axis. But as we shall
see, the same system offers an interesting set of behaviors if
one is willing to probe a little further. A detailed study of the
general motion under such circumstances is missing in the
literature. The present work is an attempt to fill that gap by
studying the motion of a point particle on a turntable in the
presence of friction, both analytically and numerically.

In Sec. II, the equations of motions for the sliding particle
are derived and expressed in dimensionless form. Some of
the general properties of the solutions to the equations are
then discussed. In Sec. III, solutions to the equations are
derived for two special cases: (1) when the particles are mov-
ing slowly with respect to the lab frame, and (ii) when the
particle is moving slowly with respect to the turntable.
Section IV deals with the numerical solution of the problem;
various trajectories are illustrated and the dependence of the
particle escape speed on the initial direction of motion is
determined at various locations on the table. In the final sec-
tion, we conclude with a brief summary and possible exten-
sions of the current work.

II. THE EQUATIONS OF MOTION

Consider a point particle of mass m on a turntable of infi-
nite extent. Let the coefficient of friction between the particle
and the table surface be u (we will assume that the coeffi-
cients of static and kinetic friction are the same). Assume that
the table is rotating with a uniform angular speed Q about an
axis that is perpendicular to the plane of the table. Let (r, 0)
be the polar coordinates of the particle with respect to an iner-
tial frame, defined by taking the point of intersection of the
rotation axis and the table as the origin. For a particle at rest
with respect to the table, the frictional force on the particle
will be in the (negative) radial direction. The magnitude of
this static friction force will vary from O to pmg, depending
on the distance of the particle from the origin. When there is
relative motion between the particle and the table, the magni-
tude of the kinetic friction force on the particle will be umg.
The direction of the frictional force in this case is determined
by the velocity of the particle relative to the table:
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Ul = (FF + 109) — Q0. (1)

Since the frictional force opposes the relative motion
between the particle and the table, its direction will be oppo-
site to that of #.. The frictional force on the particle, when
it is in motion with respect to the table, is thus given by

B A Q0 — (77 + r00)
F = :qug(*Urel) = umg - y (2)
2(Q—9) 4 72

where ¥, 1s the unit vector in the direction of the relative ve-
locity. The equations of motion in polar coordinates then
take the form

—ugr
20— 07+ 72

.. -2
P—rf =

3

and

ugr(Q —0)

270 4+ r0 = 4)

r2(Q — 9)2 + 72

As mentioned above, if the particle remains at rest with
respect to the table (that is, if 7 =7 =0 and 0 = Q), the
static frictional force on the particle will be Fy = —mQ’RF,
where r =R is the radial location of the particle.

The time scale in the problem is set by the angular veloc-
ity of the turntable Q. There is also an inherent length scale
in the problem, R .y, the radial distance beyond which the
particle cannot remain at rest with respect to the turntable.
This distance is found by equating the centrifugal force
MR 1y in the rotating frame (at r = R,;,,x) to the maximum
value pumg of the static friction force, giving

Mg

Rmax = &

&)

It is convenient to define the two dimensionless variables
t=1Q and ¢ =r/R .- Equations (3) and (4) in terms of these
new variables are

éu _ 60/2 _ _é - (6)
52(] _ 0/) + 512
and
280 + 0" = -0 @)

Jeu—oiver

where the prime denotes differentiation with respect to 1.

The equations obtained above are two coupled nonlinear
equations, and a complete analytic solution looks difficult.
The non-conservative nature of the frictional force makes it
impossible to write down the first integrals of motion using
conservation laws. Nevertheless, one can discern certain gen-
eral properties of the solution:

1. If the particle is at rest with respect to the table within the
region given by £ <1, it remains at rest with respect to
the table. In the rotating frame of the turntable, the
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particle velocity is zero initially and hence the Coriolis
force will be absent at that initial instant. The centrifugal
force acting in the radial direction will be balanced by the
static friction force because r < R,.x. In particular, if the
particle comes to rest with respect to the table in the inter-
nal region given by ¢ < 1, the particle will subsequently
remain at rest with respect to the table.

2. Since ¢ >0, then from Eq. (6) we find that if ¢ < 0, then
&" > 0. Thus, if ¢ < 0 initially (that is, if the radial veloc-
ity points inward), then ¢ will reach a minimum value and
will thereafter increase monotonically with time.
Moreover, if & > 0 (the radial velocity points outward),
then ¢ will increase monotonically with t; this is because
if & ever becomes zero, it can only become positive (or
remain zero) in the next instant (since & >0). However,
in both cases, if ' =1 (i.e., 0 =Q) when & =0 and
£ <1, then the particle will come to rest in the frame of
the table.

3. From Eq. (7), we see that if 0/ =0, then 0" > 0. This
implies that if one starts with ' > 0 (a tangential velocity
in the direction of the rotation of the turntable), it will
remain so at all future times.

4. From point 2 above, we know that & will eventually
become positive (or equal to 0). Then after long enough
times—long enough to ensure that & is positive—Eq. (7)
shows that if @ > 1, then 6" < 0. Under similar condi-
tions (with & > 0), we see that if 0 <0, then 0" > 0.
These two conditions ensure that eventually the value of
0’ lies between 0 and 1.

The conclusions are what one would expect intuitively. If
the particle does not come to rest with respect to the table, it
will eventually move away from the center to greater distan-
ces. And its angular velocity, as observed from the lab frame,
will eventually lie between O and angular velocity of the ta-
ble Q.

III. ANALYSIS FOR SPECIAL CASES

Two cases where one can approximate the equations of
motion so that analytical solutions are possible are discussed
below. These are: (A) when the particle moves slowly as
observed in the lab frame, and (B) when the particle moves
slowly as observed in the rotating frame.

A. Particle moving slowly in the lab frame

Imagine that the particle has been placed gently on to the
turntable by a person who is at rest in the lab frame. This
would mean that the particle velocity is zero initially and it
will remain small for a certain period of time at least.
The particle velocity can be considered to be small if
|F7 4+ r00] < Qr; that is, when 7 < Qr and 0 < Q. In terms
of the dimensionless variables, these conditions become
&« ¢ and 0 <« 1. If the initial condition is such
that ¢'(0) < £(0) and 6'(0) < 1, there will be a time range
in which ¢ and 0 remain small compared to ¢ and I,
respectively. During this time range, we can approximate
(1 — ') ~ 1 in the equations of motion, so that Egs. (6) and
(7) become

é/
¢=80" - ®)
62 + 6/2
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and
1 _ 280
NEET

To simplify further, we neglect & in comparison to ¢ and
replace ¢ with £(0) = &, the value of ¢ at T =0. The resulting
equations will be valid as long as &, which is initially small,
has not grown to be comparable to &, and while ¢ itself has
not changed appreciably from its initial value. These approx-
imations will need to be taken into account when estimating
the range of validity of the following analysis (see below).

Under these assumptions, the radial equation is

él
& =G0 -~ (10)
<o

and the tangential equation becomes

0 = )

1
0" =—. 11
% D

Integration of Eq. (11) with initial conditions 6(0) =0 and
0'(0) = 0 gives

2

p
0=—. 12
2% 12)

(It is always possible to choose 6(0) =0 simply by defining
0 appropriately.) Substituting the solution for 0 into the ra-
dial equation gives a second-order inhomogeneous equation
for £. The solution with initial conditions &(0)=¢&, and
&'(0) = 0 gives

P

T (13)

The approximations made in arriving at the above solution
are 0 <1, < ¢, and |&— &| < &. For the solution
obtained these conditions reduce to 7 < &y, T < & 3 and
T < /&, respectively. The last of these conditions is the
one that gets violated first as time progresses.

Figure 1 shows the trajectories obtained by numerical inte-
gration of the exact equations of motion, compared to the ap-
proximate analytic solutions. The numerical work was
carried out in MATLAB and is discussed in greater detail in
Sec. IV. For the trajectories shown in Fig. 1 we used
£o=>500 and placed the particle at rest in the lab frame at
7=0. The agreement between the numerical and analytical
solutions is found to be good. The solution should be valid
until 7=+v/500 ~ 22 and this is approximately where the
curves start deviating from the numerical results.

B. Particle moving slowly with respect to the turntable

Consider the case where the particle is placed at some
location on the turntable with zero initial velocity with
respect to the rotating frame. The particle velocity with
respect to the turntable will then be small at least for some
interval of time. Making the relevant approximations, we
can analytically solve for the motion of the particle during
this time.

When the particle is moving slowly with respect to the
turntable, we have 0’ ~ 1 and &' ~ 0. Define
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Fig. 1. Comparison of our approximate analytic solution with numerical cal-
culations for the motion of a particle released from rest with respect to the
lab frame at ¢, =500. The analytic predictions for &(t) (dashed curve, left
axis) and 0(t) (solid curve, right axis) closely match the the numerical
results (circles for ¢ and diamonds for 0)). The time 7 is measured in units of
1/Q, while ¢ is measured in units of R ..

e=0-1, (14)

which is the angular velocity of the particle in the rotating
frame. The condition that 6’ ~ 1 implies that |@'| < 1.
Neglecting the term (@' compared to € in the radial equation
and 2@’ compared to 2¢’ in the tangential equation, the
equations of motion become
¢
"
Y "

and
coe'

Since ¢ = @' = 0 initially, the term 2@ can be discarded
in comparison to & inside the square root in both equations.
The justification for this approximation is that & grows faster
with time than é@’. As the particle starts from rest in the
frame of the turntable, the velocity-independent centrifugal
force tends to increase the radial velocity whereas the tan-
gential velocity buildup can happen only once the velocity-
dependent Coriolis force is appreciable. Under this addi-
tional approximation, Eqs. (15) and (16) become

¢ —¢=-1 a7

28 + 60" = — (16)

and
2 +¢0" =0, (18)

where in the second equation the term ¢@®’ / & has been
neglected. The resulting equation for the radial motion
[Eq. (17)] is identical to the equation for radial motion of a
bead on a uniformly rotating rod in the presence of friction.
The solution to this equation is

&= (& — 1)cosht + 1, (19)
where the boundary conditions &(0) = &, and &'(0) = 0 have

been used to determine the constants of integration. Note
that the above solution is valid only when &y > 1. If {3 < 1,
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the particle will remain at rest with respect to the table. In
the limit of &, approaching 1, the equation predicts £ =1 for
all times, as expected.

Integrating Eq. (18) once and using the boundary condi-
tions above, we obtain

® =2log <ig) .

The solution obtained for ¢ can be substituted into this equa-
tion and integrated to get the variation of ® with time. This
solution is valid provided |®'| < 1 and |¢®'| < |¢'|. For
values of &, > 1, these conditions are satisfied for 7 < 1.
For values of &, closer to (and greater than) 1, the approxi-
mations hold for longer times. A comparison of the solutions
from this approximate analytical analysis and the exact nu-
merical results is shown in Fig. 2.

(20)

IV. NUMERICAL ANALYSIS

The analytic analysis carried out above is limited in its
scope and it does not yield the rich variety of trajectories that
are possible in this system. In this section, we present numer-
ical solutions to the exact equations and classify the resulting
trajectories in terms of their long-time behavior.

The equations of motion [see Eq. (2)] expressed in
Cartesian coordinates are

. _Qy — Uy
m, = pumg )
\/(Qy +0)7 + (Q - vy)?
) Qx — v,
mvy, = pmg ) 21

V@ 0 + (@ -0,
X = Uy,

y = 0,.

These four coupled differential equations have been solved
using the second-order Runge-Kutta method for a variety of
initial conditions. The unit of time is chosen such that the
magnitude of Q is 1 and distances are measured in units of
Rnax. This allows comparison to be made between the

167
15}
1.4}
un

1.3}

1.2}

1.14-——Y .
00 05 10 15 20 25

Fig. 2. Comparison of the theoretical prediction for &(t) with numerical
results for a particle released at &= 1.1 with zero velocity with respect to
the turntable. The analytic solution (solid curve) matches the numerical
results (diamonds) for times 7 < 1.
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& sin(0)
o
o

-1.0[. , : ,
-1.0 -0.5 0.0 0.5
& cos(6)

Fig. 3. Trajectories of the particle as seen from the lab frame for four differ-
ent initial conditions. The parameters varied are &, (initial location), ¢ (the
direction of the initial velocity measured in the turntable’s frame with
respect to the radially outward direction), and v, (the initial speed). The
arrows indicate the starting location and initial direction. The table is rotat-
ing counterclockwise as seen from the top. The initial conditions are:
£0=0.5, ¢ = m, and vy =1 for trajectory A (thick, solid curve, blue online);
£o=0.5, ¢ =0, and vy = 0.6000 for trajectory B (thick, dashed curve, red
online); £, =0.5, ¢ =0, and v, =0.6078 for trajectory C (thin, solid black
curve); and &y=1.1, ¢ = 1.27, and vo= 1.3 for trajectory D (thin, dashed
curve, pink online).

1.0

numerical results and the analytical results above (Figs. 1
and 2). The time step in the simulation was taken to be
0t =0.001; this was found to be sufficient for convergence of
the trajectories to acceptable limits for the entire time dura-
tion for which trajectories were generated.

Figure 3 shows some of the particle trajectories obtained
from the simulations, as seen from the lab frame; Fig. 4
shows the same trajectories as seen from the rotating frame.
One can see that the trajectories exhibit a variety of behavior.
The trajectory depends on the point at which the particle is
released, the speed with which it is released, and the direc-
tion of the initial velocity. In trajectories A and B (see fig-
ures), the particle starts off in the region ¢ < 1 and comes to
rest with respect to the table. In trajectory C, which has
almost the same initial conditions as trajectory B (except for
a marginal increase in the initial speed), the particle manages
to come out of the £ =1 region and eventually moves off to

0.3

0.0y

& sin(0-1)

-0.3]

00 03 06 009 1.2
& cos(6-1)

Fig. 4. The same trajectories as in Fig. 3, as seen by an observer in the rotat-
ing frame. The arrows indicate the starting location and direction of the ini-
tial velocity. In all cases except C (thin, black, solid curve), the particle
eventually comes to rest with respect to the turntable.
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infinity. Trajectory D shows another possibility, where the
particle is launched from the region £ > 1, but the initial con-
ditions are such that it comes to rest with respect to the table
in the region & < 1. One can classify these trajectories into
those executing bounded motion and those that move off to
infinity. As discussed in Sec. II, the bound trajectories all
correspond to the particle coming to rest with respect to the
turntable in the region £ < 1.

It is interesting that this system exhibits an escape
speed—a minimum initial speed required to get the particle
to move off to infinity. From the simulations, the escape
speed v, is found to depend on the location where the particle
is released as well as the direction of its initial velocity. This
is unlike the case for motion in a conservative central force
field where the escape speed is independent of the direction
of the velocity. Figure 5 shows the variation of the escape
speed as a function of the initial direction ¢ (as measured by
an observer on the turntable with respect to the radially out-
ward direction), for several values of the initial position, &.
The minimum escape speed occurs at ¢ =~ 0.4 radians for all
values of &, less than 1. Qualitatively this makes sense,
because for a noninertial observer on the turntable the
Coriolis force tries to deflect the particle to the right of its
direction of motion (for the case when the table is rotating
counterclockwise as seen from the top), so it should be
advantageous to release the particle to the left of the radially
outward direction (rather than in the radial direction itself)
so as to make it move farther away from the center. For the
same reason, it is most difficult to get the particle to move
away to infinity if it is released at an angle of about ¢ ~ 4
radians with respect to the outward radial direction. In this
case, the Coriolis force tries to push the particle towards the
center of the table, confining it more to the interior region.

The variation of escape speed with ¢ is more complicated
when the particle starts outside the £ < 1 region and a com-
plete analysis will not be presented here. Although a particle
left at rest with respect to the table at £ > 1 will move off to
infinity, it is possible to get the particle to come rest in the
region & < 1 for a range of initial speeds that depend on the
angle ¢ (trajectory D in Fig. 3, for example).

2.0f —o—¢&=08
—h— £,=05
——§,=02
150 —=—¢g=0001

¥
0.5¢

0.0 : ‘ : ‘ ‘ :
o 1 2 3 4 5 6

¢ (rad)

Fig. 5. Escape speed v, as a function of launch angle ¢. Both the speed and
the angle are as seen by an observer located at the point of release of the
particle on the turntable and at rest with respect to the turntable. The angle
¢ = 0 corresponds to the outward radial direction. The four data sets are for
release at &,=0.8 (circles), &,=0.5 (stars), {,=0.2 (inverted triangles),
and ¢, =0.001 (squares).
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Lastly, let us consider the final position £ of a particle that
is placed gently on the table by an inertial observer. In this
case, the particle is initially at rest in the lab frame. Figure 6
shows &, as a function of initial radius ¢, obtained numeri-
cally. The maximum distance at which the particle can be
placed so that it will still remain bounded is &p.=0.87.
Experimental determination of this distance could be a way
of finding the coefficient of friction between the particle and
the table. Using Eq. (5), we can relate &, to the critical dis-
tance rq. in conventional units:

Qz Foc

= . 22
éOc 8 ( )

u

This method is to be contrasted with the more familiar one,
wherein one would place the particle at a known location r,
with the table initially at rest and find the minimum rota-
tional speed of the turntable at which the particle begins to
slide. If Q,;,, is the minimum value of the angular speed for
a distance r,, then

o= Sl 23)
8

Although these two expressions for u look similar, the under-
lying concepts employed are subtly different.

V. SUMMARY

A particle sliding on a rotating table exhibits interesting
behaviors that are overlooked in the typical textbook treat-
ment. The motions of the particle for short durations after it
has been released from rest (both with respect to the turnta-
ble and with respect to the lab) can be found analytically.
Numerical integration of the exact equations yields a rich
array of behaviors over longer time periods.

All the results we have discussed in the paper should be
verifiable in an undergraduate lab. It must be kept in mind
that our analysis assumes that the particle is point-like. The
effects of nonzero particle size could be important, as is the
case, for example, in the motion of a puck subject to friction
on a stationary surface.'™! There are two types of such

1.0

0.8

0.6
Ty

0.4

0.2+ §, =087

0.0¢ ' ‘ ' ‘
00 02 04 06 08 10

S

Fig. 6. The final location of the particle as a function of the initial distance
from the center, for a particle released at rest with respect to the lab frame.
When &, > 0.87, the particle moves off to infinity.
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effects: the tendency of the object to topple, and its tendency
to rotate about an axis perpendicular to the plane of the turn-
table. The first can be mitigated by using an object, whose
height is much less than its lateral dimension. The second
effect will not alter the results appreciably so long as the par-
ticle’s distance from the center of the turntable is large com-
pared to its lateral size (see Appendix). Thus, a sufficiently
small object on a rotating table should show a behavior simi-
lar to the predictions made in this paper.

A natural extension to the work presented here would be
to study the motion that results when the coupling between
the particle and the table is not of the dry-friction type.
Preliminary analysis of Stokes’ drag coupling indicates a
completely different kind of dynamics.
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APPENDIX

The calculations above assume that the particle is point-
like. Here, we use an order-of-magnitude analysis to deter-
mine the conditions required for this assumption to be valid.

First, consider the tendency for the particle to topple.
Suppose that the particle has a lateral size L and height £, the
exact shape being immaterial for the analysis that follows.
Assuming that the particle is undergoing pure translational
motion, the forces acting on it are gravity, the normal force,
and the friction force pointing opposite the direction of the
particle’s speed with respect to the table. To find when the
particle would topple, we need to compute the component of
the torque about the center-of-mass that lies in the plane of
the table. To make the analysis simple, we assume that the
reaction forces act at two points on the surface of contact
that are located at distances L/4 on either side of the center-
of-mass along the direction of the relative velocity of the
body with respect to the turntable (see Fig. 7). The condition
for rotational equilibrium about an axis passing through the
center-of-mass and parallel to the surface is

h L L
~+Ni——N,—=0. Al
Hmg s+ N1 5 =N =0 (A1)

The condition that the center-of-mass not move in the verti-
cal direction gives

N + N, = mg. (A2)
Solving the above equations gives
m h
Ny ="8 4 umg —. (A3)

2 L

Requiring Ny ~ N, (otherwise parts of the body will tend to
lose contact with the table) gives the condition ph/L < 1.
Since p is typically of order 1 or less, the above condition
will be satisfied provided 4 < L.

Rotation about an axis parallel to Q (that is, in the plane of
the turntable) can happen if there is a net torque in the verti-
cal direction. Even when it is purely translating, a body of
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Fig. 7. Free-body diagram for a body of height £, lateral size L, and mass m,
purely translating on the turntable. The forces acting on the body are
indicated.

nonzero size has different velocities, at its different parts,
with respect to the turntable. As a result, the frictional force
acting at different points of contact can be pointing in differ-
ent directions, leading to a nonzero torque about the center-
of-mass; this can in turn lead to an in-plane rotation of the
body, even if it starts with pure translational motion. If the
linear velocities of the parts of the object due to this rotation

Fig. 8. A rigid body consisting of two point masses, each of mass m/2, sepa-
rated by a massless rigid rod of length L. The body is located at a distance r
from the center of the turntable and subtends an angle ). Vectors Fiand F,
are the frictional forces acting on the masses and these forces make angles
p1 and f3, with the connecting rod.
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become comparable to the translational velocity of the cen-
ter-of-mass, the equations of motion used above will not
yield accurate results.

To get an order-of-magnitude estimate of when the size of
the particle will modify the equation of motion for the cen-
ter-of-mass [Eq. (2)], consider a body consisting of two point
particles of mass m/2 each, rigidly attached with a massless
rod of length L and located at a distance r from the center of
the turntable (see Fig. 8). Assuming the body to be at rest
with respect to the lab frame, the torque on the body is

L

T = %—(sinﬁz—sinﬂl), (A4)
22

where the different angles are indicated in Fig. 8. But
fo=p1+7y and 7y is of order L/r, provided L<r.

Substituting and simplifying, one gets

= umgL?
r

) (AS)

where cosy & 1, siny & L/r, and cos §; <1 have been used to
get an order-of-magnitude value. The angular acceleration o pro-
duced by this torque is obtained by dividing the torque by the
moment of inertia about the center-of-mass / = mL*/2, giving

, =18
g,

(A6)

The linear acceleration of the masses corresponding to this
angular acceleration is

L
anpg. (A7)
On the other hand, the net force acting on the center-of-mass

is of order umg (assuming cosy = 1) and the corresponding
linear acceleration of the center-of-mass is

d ~ ug. (A8)
Comparing a and ¢, it is seen that the effects of rotation of
the body can be neglected provided that L < r, for an object
that was initially at rest in the lab frame.

Thus, the two conditions required for the body to be
treated as a point particle are that its lateral size be much
larger than its height and that its distance from the center of
the table be large compared to its lateral size. These condi-
tions are only approximate. For example, one could have an
initial condition in which rotational motion is of such a mag-
nitude that the frictional force acting at different locations
cannot be treated as being collinear. Nevertheless, this analy-
sis gives us a ballpark figure of when the results derived in
the paper are valid.
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Science (George Routledge and Sons, London, ca. 1874). Arthur Gordon Webster (1863-1923) apparently liked this
Christmas present from his mother, for he spent his career as the professor of physics at Clark University in Worches-
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working with Herman Helmholtz. At Clark he succeeded Albert Michelson when the latter went to the University of
Chicago. Although he wrote several well-known physics and mathematics texts, he is probably best known for being
one of the founders of the American Physical Society in 1899. (Notes by Thomas B. Greenslade, Jr., Kenyon College)
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